
Submitted to the Annals of Applied Statistics

AN EVALUATION OF STATISTICAL METHODS FOR AGGREGATE
PATTERNS OF REPLICATION FAILURE

BY JACOB M. SCHAUER1, KAITLYN G. FITZGERALD2 SARAH PEKO-SPICER2 MENA C.
R. WHALEN2 RRITA ZEJNULLAHI2 AND LARRY V. HEDGES2

1Institute for Policy Research, Northwestern University, jms@u.northwestern.edu

2Department of Statistics, Northwestern University,

Several programs of research have sought to assess the replicability of
scientific findings in different fields, including economics and psychology.
These programs attempt to replicate several findings and use the results to
say something about large-scale patterns of replicability in a field. However,
little work has been done to understand the analytic methods used to do this,
including what they are assessing and what their statistical properties are.
This article examines several methods that have been used to study patterns
of replicability in the social sciences. We describe in concrete terms how each
method operationalizes the idea of “replication” and examine various statis-
tical properties, including bias, precision, and statistical power. We find that
some analytic methods rely on an operational definition of replication that
can be misleading. Other methods involve more sound definitions of repli-
cation, but most of these have limitations such as large bias and uncertainty
or low power. The findings suggest that we should use caution interpreting
the results of such analyses and that work on more accurate methods may be
useful to future replication research efforts.

1. Introduction. The replication crisis in science, particularly in psychology, has in-
volved efforts to empirically replicate scientific findings. Though not the first such pro-
grams, the Replication Project: Psychology (RPP) (Open Science Collaboration, 2015) and
the Replication Project: Economics (RPE) (Camerer et al., 2016) have been among the most
prominent in this discussion. Both of these took a set of findings and attempted a single
replication of each: the RPE involved 18 findings of different phenomena, while the RPP at-
tempted to replicate 100 findings. These programs were influential in shaping how we think
about replicability, as various research programs have likewise attempted to replicate mul-
tiple findings (e.g., Camerer et al., 2018; Klein et al., 2018). The results of such programs
remain among the most commonly cited evidence of a crisis. For example, the results of the
RPP have widely been interpreted to indicate that 61% of their replication attempts failed by
both the academic literature and popular press (e.g., Yong, 2016; Wood & Randall, 2018).
Similarly concerning are reports that replication studies in the social sciences tend to find
effects that are between 46% and 64% smaller than original studies (Camerer et al., 2018).

Yet, figures like that 61% failure rate or 64% decrease in effect sizes are without context:
they arise from statistical analyses, and their interpretation must take into account at least
two aspects of those analyses. First, any analysis method for replication depends on a precise
operational definition of what it means for a finding (or several findings) to “replicate.” While
the idea of “replication” might seem intuitive, it is often difficult to define it precisely (see
Bollen et al., 2015; Shapin & Shaffer, 1985). Perhaps because of this, researchers seldom
specify a concrete definition, and often it is up to the reader to discern it. Moreover, different
analysis methods can rely on different, even conflicting definitions of replication. Second,
the results of statistical analyses are subject to error. Null hypothesis tests, for instance, can
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produce type I and type II errors. Estimates may have bias, and even if they are unbiased they
still must be viewed in light of their statistical uncertainty. Thus, in order to understand a
statistic like that 61% failure rate, we need to know (1) what it means for replications to fail,
and (2) how accurate the methods are that produced that statistic.

When researchers attempt replications of findings for several different phenomena, there
are at least two ways to talk about analysis methods. The first involves determining whether
a specific replication study failed (i.e., for a single finding). We call these pairwise analyses,
and programs like the RPP and RPE have used a variety of such methods. The most common
pairwise analysis concludes that a replication failed if it disagrees with the original study
in sign or statistical significance (e.g., the original study is significant, but the replication is
not). Various researchers have challenged pairwise analysis methods common in replication
research (e.g., Etz & Vandekerckhove, 2016; Hartgerink et al., 2017; van Aert & van Assen,
2016; Hedges & Schauer, 2019a,b). However, such challenges largely focus on proposing
alternative methods rather than clarifying the properties of existing ones.

The second class of methods is less concerned with individual replication studies, but
rather on the entire group of findings. We call these groupwise methods, and they quantify
the extent to which a series of different findings were successfully replicated. For instance,
inferences are often framed in terms of whether original and replication studies involve sim-
ilar effects on average (see Open Science Collaboration, 2015; Camerer et al., 2016). Very
little attention has been paid to groupwise analysis methods. This is important, because the
results of these methods are often used to characterize the replication crisis, but their statisti-
cal properties are seldom understood.

This article examines groupwise analysis methods that researchers have used to assess the
replicability of several findings. Our goal is to shed light on the properties of these methods
so that we can better understand the results of empirical research. We focus primarily on
six methods used in RPP, RPE, and the Replication Project: Science and Nature (RPSN)
(Camerer et al., 2018). We also consider one other method that was proposed to address
some of the shortcomings of these methods (Patel, et al., 2016). While these are not the
only relevant groupwise analysis methods, they have been used to support some prominent
claims about the replication crisis in science. Though we are less concerned with proposing
a litany of alternative methods, we do discuss potential corrections (where possible). The
following sections outline the types of replication research relevant to groupwise analysis
methods and describe a relevant statistical model to formalize analyses of replication. Then,
for a variety of analytic methods that replication research programs have used, we examine
what they are attempting to assess and delineate some of their statistical properties. These
methods, displayed in Table 1, include estimating the proportion of failed replications, as well
as comparisons of effect sizes and p-values from original and replication studies. For each
method, we highlight its properties under plausible sets of conditions, including with data
from the RPE, RPP, and RPSN. In some cases, we find that the methods focus on conceptions
of “replication” that may be misleading, and that many tend to have poor statistical properties.

2. Data. It has been increasingly common for researchers to attempt replications of sev-
eral findings as part of the same program of research. The RPE, RPP, and RPSN did this,
as have several other major replication research programs (e.g., Klein et al., 2014, 2019;
Schweinsberg et al., 2016). Such programs have used a variety of group- and pairwise meth-
ods to assess replicability. The groupwise analyses involve reporting the mean relative effect
size (i.e., the average ratio of the replication effects to the original study effects), examining
the correlation and average difference between effects from the original and replication stud-
ies, and comparing differences in the p-values from original and replication studies. These
methods, listed in Table 1, are described in detail throughout this article.



STATISTICAL METHODS FOR AGGREGATE PATTERNS OF REPLICATION FAILURE 3

The properties of many analysis methods discussed here will depend on how precisely
effects are estimated in each experiment, which will in turn depend on how large those studies
are. In order to demonstrate these properties under realistic conditions, we use data from the
RPE, RPP, and RPSN. These research programs each used at least one (and often more than
one) of the analysis methods discussed in this article. These programs also have publicly
available datasets at the Open Science Framework (see https://osf.io). From these data, we
have extracted relevant information related to how precise each study was (on the scale of
Cohen’s d). We use these not to conduct any re-analysis of the RPE, RPP, or RPSN, but
rather to demonstrate the properties of the analysis methods they used. All of our data and
code are available as an online supplement to this article.

Although RPE, RPP, and RPSN conducted their analyses in the metric of effect sizes trans-
formed into correlation coefficients, we conducted our analyses in the metric of standardized
mean differences for two reasons. First, most of the data arises from between-group experi-
ments, for which the standardized mean difference seems to be a more direct and mathemat-
ically natural effect size than the correlation coefficient. Second, the sampling distribution of
the standardized mean difference when transformed to the metric of the correlation coeffi-
cient is not the same as that of a directly computed correlation coefficient (see Borenstein, et
al., 2009, pages 48-49). Therefore, the salutary properties of the Fisher z-transform (normal-
ization and variance stabilization) do not hold for these transformed “correlations”.

3. Model & Notation. Analyses of replication can be understood within the framework
of meta-analysis, which is the statistical methodology for combining information from mul-
tiple (i.e., two or more) studies (see Borenstein et al., 2009). The models commonly used
in meta-analysis can help clarify important aspects of analyses of replication (Hedges &
Schauer, 2019b; Schauer, 2018; Valentine et al., 2011).

Suppose we are interested in the replicability of a population of N findings, and that a
subset of m ≤ N findings are selected to be replicated. The analyses considered here as-
sume that there are k = 2 studies per finding: an original study and a replication study. In
this article, finding refers to a specific phenomenon under investigation, and study refers to
experiments used to investigate a finding; for instance, the RPP had m= 100 findings each
with k = 2 studies (the original and replication studies). When multiple replication studies
are conducted for a finding, their results are often aggregated into a single result, such as with
the Many Labs Replication Projects (Klein et al., 2014; Klein et al., 2018).

3.1. Parameters of interest. Let θij be the effect in study i = 1,2 for finding j =
1, . . . ,N . We assume that θij is on the scale of one of the standard effect sizes used in meta-
analysis, such as standardized mean differences or z-transformed correlations (see Cooper et
al., 2009). The effect θij is what would be observed in study i of finding j in the absence of
any estimation error, such as from the sampling of experimental units.

The θij are the scientific estimands of interest in each study, and so replication should be
defined as some function of the θij (see Hedges & Schauer, 2019a,b). For a single finding
j, replication failure typically involves effects that disagree in size (i.e., θ1j 6= θ2j) or in
sign (e.g., θ1j > 0 but θ2j ≤ 0) (see Bollen et al., 2015). It stands to reason that aggregate
definitions of replication (across N findings) ought to be somewhat compatible with these
pairwise definitions.

Precisely defining replication across a series of N findings requires at least one additional
consideration about the θij : are they fixed or random? One reason to treat the [θ1j , θ2j ] as
random is if the m findings to be replicated are randomly selected from a population of N
findings. If we treat the [θ1j , θ2j ] as random, one appropriate model is the multivariate ran-
dom effects model used in meta-analysis (see Hedges & Olkin, 1985; Olkin & Gleser, 1994;
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Raudenbush et al., 1988). This assumes [θ1j , θ2j ] are exchangeable draws from a distribution
with mean [µ1, µ2], marginal variances τ21 and τ22 , and correlation ρ. Note that µi, τi, and ρ
are attributes of the population of N findings and vectors [θ1j , θ2j ] from which the selected
findings are a sample, and so inferences about replication pertain to that population.

In practice, it will often be difficult to generalize from the sample of m findings to the
entire population of N findings. Research programs seldom sample findings randomly, but
rather select them because their findings are of interest or the source of skepticism. Even
when programs identify findings to replicate using quasi-probability sampling (e.g., Open
Science Collaboration, 2015), there are reasons to suspect that these samples are not neces-
sarily representative of an entire field (see Gilbert et al., 2015).

Instead, one may treat the m findings for which replications are conducted as the entire
population of interest, so that N =m. This is equivalent to treating the θij as fixed, but un-
known constants, and inferences pertain only to the m findings. However, we can use similar
notation as the random effects model, denoting the mean of [θ1j , θ2j ] as [µ1, µ2], the marginal
variances τ21 and τ22 , and their correlation ρ. Here, the mean and variance are not properties
of random variables, but rather are descriptive statistics of the m vectors [θ1j , θ2j ]. In this
article, we will mostly treat the θij as fixed, and while this leads to different conceptions of
analyses, Hedges and Schauer (2019b) argue that fixed- and random-effects replication anal-
yses tend to have relatively similar properties, and that the parameters are analogous between
the fixed- and random-effects models. Note that the variance components τ2i represent vari-
ation in true effect sizes across findings that measure fundamentally different effects. This
differs from variance components usually encountered in meta-analysis where experiments
are (at some level of generality) estimating the same effects. Thus, the size of the τ2i values
in this paper depends on how findings subject to replication attempts are selected.

In this article, we show that common groupwise analyses of replication often, but not
always frame replication as a function of the θij . An increasingly common metric for quan-
tifying replication success or failure is the mean relative effect size (MRES), which can be
expressed as:

(1) η =

m∑
j=1

θ2j/θ1j
m

Researchers have also examined quantities related to the distribution of θij . For instance,
researchers appear interested in the correlation ρ between θ1j and θ2j , and have examined the
differences between effects δj = θ1j − θ2j , including the average difference µδ = µ1 − µ2.

3.2. Statistical model and estimates. While the parameters above are used in framing the
definition of “replication,” what makes analyses difficult is that we do not actually observe
θij directly, but instead must estimate them, and analyses of replication must also rely on
these estimates. Let Tij be the estimate of θij . A useful assumption is that Tij is unbiased
and normally distributed with known variance vij :

(2) Tij |θij ∼N(θij , vij)

This is an accurate approximation for most effect sizes (see Cooper et al., 2009), including
standardized mean differences (Cohen’s d), which is the scale we use to report results in
this article. Note that δj is often estimated by Dj = T1j − T2j ; under the model Dj |δj ∼
N(δj , v1j + v2j).

Researchers have also assessed replication based on p-values from original and replication
studies. These p-values typically arise from a test that θij = 0. In this article, we assume
two-sided p-values, so that under the model, the p-value for study ij is given by:

(3) pij = 2

[
1−Φ

(
|Tij |√
vij

)]
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where Φ(x) is the standard normal distribution function.
The probability of a statistically significant result in study ij is given by

(4) 1− βij = 1−Φ

(
c1−α/2 −

θij√
vij

)
+ Φ

(
cα/2 −

θij√
vij

)
where cx is the xth percentile of the standard normal distribution, and α is the significance
level, which we assume is α = 0.05 throughout this article. Note that when θij 6= 0, then
1− βij is the power of the test, and when θij = 0, then 1− βij is the significance level of the
test.

From equation (4), we can see that the power of any one study will depend on |θij |/
√
vij ,

and thus on θ2ij/vij . This is because the distribution of pij will depend on θ2ij/vij . Bahadur
(1960) and Lambert and Hall (1982) show that p-values are asymptotically log-normal when
the null hypothesis is false (i.e., when θij 6= 0). Based on their results, it can be shown that
when θij 6= 0 then −2 log(pij) has an asymptotic distribution that is normal:

(5) − 2 log(pij)∼AN

(
θ2ij
vij
,2
θ2ij
vij

)
Some methods involve averages of p-values, which will depend on the averages of the

θ2ij/vij . For j = 1, . . . ,m, denote the average of the θ21j/v1j as λ1 and the average of the
θ22j/v2j as λ2.

Table 1 highlights the methods that this article examines. These are methods that research
programs, including those whose data are used in this article, have used to assess replication.
The table describes each method, highlights how it defines replication in terms of the param-
eters discussed in this section, how those definitions are assessed, and any glaring strengths
or limitations (which are discussed throughout this article).

There are two different approaches to defining replication used in the methods we discuss.
One approach aggregates comparisons (e.g., ratios or differences) among θ1j and θ2j values.
The other approach involves comparisons of the collection of θ1j values with those of the
θ2j values (e.g., comparisons of average properties of θ1j values with those of θ2j values, p-
values, or the correlation between the θ1j and θ2j). Methods that aggregate the comparisons
between θ1j and θ2j do not depend on the variation between the θ1j’s or the variation between
the θ2j’s, and thus have exactly the same properties whether we consider the θij’s fixed or
varying randomly across values of j. On the other hand, the properties of methods that involve
the variation of the θij’s across values of j do depend on the distribution of the θij’s, a point
we try to clarify in our discussion.

4. Mean Relative Effect Size. Replication research programs have reported the mean
relative effect size, which is used to show how much larger or smaller effects in the replication
studies are on average relative to the effects in the original studies. This method frames
replication in terms of the mean of the θ2j/θ1j and uses the mean of the T2j/T1j to estimate
it. Note that this analysis depends on ratios, which can be difficult to work with statistically.
This section shows that because of this, the reported mean relative effect size (i.e., the mean
of the T2j/T1j) can be highly inaccurate.

This analysis concerns the mean relative effect size, which refers to the average of θ2j/θ1j ,
denoted as η in equation (1). Two caveats are worth noting here. First, if any of the θ1j = 0,
then η will not be defined. Second, η is different than µ2/µ1. But, assuming θ1j 6= 0, then η
provides an intuitive scale on which to quantify replication. When the replications (mostly)
succeed so that θ2j = θ1j , then η would be near 1.0. When the original study produces a much
larger effect than the replication (i.e., θ1j >> θ2j), then η will be closer to 0. The quantity η
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Method Definition Estimator Primary Limitation
Mean relative effect size
(MRES)
Estimate the average
ratio of replication study
effects to original study
effects

η =
∑m
j=1

θ2j/θ1j
m

H =
∑m
j=1

T2j/T2j

m

Large uncertainty:
H can be close to 0
when replications
succeed and η = 1.

Correlation between
effects
Determine if replication
studies and original
studies produce effects
that are correlated.

ρ=Cor(θ1j , θ2j) r =Cor(T1j , T2j)

Inconsistent definition
of replication:
High correlation
between effect
parameters does not
mean that they are
similar in size
Bias:
Reported correlation
will be downwardly
biased

Paired tests of effects
Determine if replication
studies and original
studies produce different
effect sizes on average.

E[θ1j − θ2j ] = µδ = 0
∑m
j=1

T1j−T2j

m

Inconsistent definition
of replication:
All findings can fail to
replicate, but averaging
across findings ignores
this.

Prediction interval
coverage
Determine the proportion
of replication studies in
the 95% prediction
interval of the original
study.

π = P

[
|T1j−T2j |√
v1j+v2j

< 1.96

]
p=

∑m
j=1

1

[
|T1j−T2j |√

v1j+v2j
<1.96

]
m

Not sensitive to
replication failures:
Wide range of
|θ1j − θ2j | values lead
to large values of p

Fisher’s method
Assess if nonsignificant
replication studies are
actually false negatives.

θ1j 6= 0∧ θ2j 6= 0 X2
F =

∑
j:T2j null−2 log(p2j)

Low Power:
Requires many false
negatives that are each
highly powered in order
to achieve adequate
power

McNemar’s test
Determine if replication
studies are significant at
a different rate than
original studies.

β1 = β2 X2
M = (m10−m01)

2

m10+m01

Inconsistent definition
of replication:
Requires the power of
the original and
replication studies to be
equal, but not the effects

Tests of p-value means
Determine if p-values for
original studies and
replications have the
same mean.

β1 = β2 tp =
∑m
j=1

p1j−p2j
m

Inconsistent definition
of replication:
Requires the power of
the original and
replication studies to be
equal, but not the effects

TABLE 1
This table summarizes the methods examined in this paper. For each method, the table highlights the type of

replication pattern it is attempting to assess and lists any important limitations.
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is a summary statistic of the θ2j/θ1j , and the θ2j/θ1j may vary for each finding j. Therefore,
it is possible for their mean to be 1 even if all of the θ2j/θ1j are themselves quite different
from 1.

The reported mean relative effect size has been used as an estimate of η:

(6) H =

m∑
j=1

T2j/T1j
m

A key point is that H is an estimator of the actual mean relative effect size η, and so it must
be interpreted in light of its accuracy and precision. When studies largely replicate, so that
η = 1, then we would want H to be close to 1 with high probability. But if H were, say,
very small (e.g., less than 0.1) or very large (e.g., greater than 2), with high probability, then
we would worry about the accuracy of H as an estimator for η because it would indicate
that the studies mostly failed to replicate. Similarly, if the effects in original studies were
typically much larger than the effects in replication studies, so that η = 0, then we would
want H to be near zero with high probability; values of H that were near 1 (i.e., greater than
0.9) would be inaccurate in this case because that would indicate that the replications were
largely successful when they were not.

The distribution of H is not known, however it will depend on the T2j/T1j . If T2j/T1j
are poor estimates of θ2j/θ1j , then H will likely be a poor estimator of η. Under the model,
T2j/T1j is a ratio of normal random variables, which has been studied thoroughly in the
statistical literature. The exact distribution of T2j/T1j , which is quite complex, was derived
and studied by various researchers, including Geary (1930) and Fieller (1932). The shape
of this distribution, which largely depends on θ1j/

√
v1j , can be unimodal or bimodal and

asymmetric or symmetric (see Diaz-Frances & Rubio, 2013).
An important aspect of the distribution of T2j/T1j is that its moments (i.e., its mean and

variance) do not exist since T1j has a nonzero probability of being zero. Because the mean
of T2j/T1j does not exist, neither does the mean of H , which means that H cannot be an
unbiased estimator of η. Under certain conditions, T2j/T1j approximately follows a normal
distribution with mean θ2j/θ1j (see Diaz-Francis & Rubio, 2013; Geary, 1930; Hayya et al.,
1975; Marsaglia, 2006). Given those results, it can be shown that H is asymptotically normal
with mean η and a variance that depends on the θ2j/θ1j and each θ1j/

√
v1j and θ2j/

√
v2j .

While this would seem to imply unbiasedness, at least up to an asymptotic approximation,
simulations have found that this approximation is only accurate when both θ1j/

√
v1j and

θ2j/
√
v2j are large so that both studies have exceptionally high power. Diaz-Francis and

Rubio (2013) found that the approximation was only “good” when each study had over 95%
power. Since studies in the social sciences are seldom that high-powered (see Maxwell, 2004;
Vankov et al., 2014), this approximation will likely not be accurate when applied to replica-
tion studies.

In addition to bias, another issue is the variability of H . Because the variance of T2j/T1j
does not exist, neither does the variance of H , and hence its standard error is undefined.
But just because it is undefined does not mean that uncertainty in H can be ignored. A
well-known property of ratio distributions is that they are notoriously heavy-tailed. Because
of this, even if θ2j/θ1j = 1, very large (i.e., greater than 2.0) or very small (i.e., less than
0.1) values of T2j/T1j can occur with surprisingly high probability. As an example, suppose
θ1j = θ2j = 0.2 in Cohen’s d units so that their ratio is 1.0, and that both studies had a sample
size of 80 so that v1j = v2j ≈ 4/80. Then the probability that T2j/T1j < 0.1 is about 33%,
and the probability that T2j/T1j > 2.0 is about 18%. In other words, there is higher than a
50% chance that the value of T2j/T1j implies that these studies fail to replicate when they
successfully replicate.
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Often in statistics, including in meta-analysis, averages of noisy estimates tend to have
better precision than the estimates themselves, however this is not necessarily the case with
ratios. Notably, when θ1j = θ2j = 0 for each j, then, T2j/T1j follows a Cauchy distribution.
The average of m Cauchy random variables is itself Cauchy. This means that H follows the
same distribution as T2j/T1j and averaging does nothing to reduce noise. Thus, not only is
the distribution of each T2j/T1j heavy-tailed but taking their average does not necessarily
result in a less variable statistic.

Though the distribution of H is not known, we studied it with Monte Carlo simulations.
These simulations involve drawing m pairs of (T1j , T2j) at random and computing H as in
(6). Following the model, we drew Tij from normal distributions. To help tie these simu-
lations to empirical research, we use the estimation variances vij from studies in the RPE,
RPP, and RPSN. Thus, these simulations proceed by specifying a θij for each study in each
program. We then draw Tij ∼N(θij , vij) for each of the j = 1, . . . ,m findings in a program
and compute H . This constitutes one draw of H from its distribution for that program (and
assuming the θij values). We repeat this procedure 100,000 times for different configurations
of θij and estimated various quantities involving the distribution of H .

Our first simulation concerns how likely very large or very small values of H are to occur
when η = 1. Previous work (Marsaglia, 2006; Diaz-Frances & Rubio, 2013) suggests that
the results of these simulations will be sensitive to the size of θij , particularly the effect
parameters of the original studies θ1j . Thus, these simulations set θ1j = θ2j = 0.2, 0.5, and
0.8, which correspond with conventions of small, medium, and large effects in the social
sciences.

Figure 1 shows the distribution of H when η = 1 and θ1j = θ2j = 0.2, 0.5, or 0.8. Each
panel corresponds to a value of θij , and each colored region shows the density of H for a
given research program. In the left panel, where effects are small (θ = 0.2), the distribution
of H is highly variable, and the probability that H is less than 0.1 is about 33% for each
program in that plot; the probability H is greater than 2.0 is about 16% for each program.
Not only that, when effects are small (θ = 0.2), the mode of the distribution of H is smaller
than 1.0 for these research programs. For medium-sized effects (θ = 0.5, middle panel), the
distribution of H is less variable, though the probability that H is less than 0.1 is still about
15% for each program. Only when effects are large (θ = 0.8, right panel) do extreme values
of H become less probable. In other words, when all of the studies replicate exactly, so that
θ1j = θ2j and η = 1, this method will only estimate η accurately when the effects for each
finding are large. But if the effects are small, the probability that H is near zero can be very
large (over 30%).

Our second simulation involves a scenario where θ2j = 0 and θ1j = 0.2, 0.5, and 0.8. This
would correspond to an effect being positive in the original study and zero in the replication
study. In that case, η = 0 and we would want H to be near zero. Figure 2 plots the density of
H when θ2j = 0 and θ1j = 0.2, 0.5, and 0.8, which means that η = 0. Each panel corresponds
to a value of θ1j (0.2, 0.5, and 0.8), and each region corresponds to the distribution of H
for a given research program. In the right panel, when the effect of the original study is
small (θ1j = 0.2) and the replication study effect is zero, H will be particularly variable; the
probability that H is less than -0.9 is about 16% and the probability that H is greater than
0.9 is about 16%, which means that the probability that |H − η| is greater than 0.9 is nearly
33%. However, when the original study effect parameters are large, so that θ1j = 0.8, then
the distribution of H is less likely to be substantially different from zero.

In sum, because ratios of random variables are so noisy when effects are not large, the
following can happen: When the studies largely replicate (i.e., η = 1), H can be near zero
with high probability, and when the studies largely fail to replicate (i.e., η = 0), H can be far
from zero with high probability. This means that unless the original study effect parameters
are large for the findings considered by each research program, it will be almost impossible
to say anything conclusive about η on the basis of the reported mean relative effect size H .
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FIG 1. This plot shows the density of the estimated mean relative effect size H when the true mean relative effect
size is η = 1. Each panel shows the distribution ofH when effects in each pair of studies are the same size and are
small (θ = 0.2), medium (θ = 0.5), or large (θ = 0.8). Within each panel, the colors correspond to the distribution
of H for each replication research program. Note that an accurate estimate would correspond to H ≈ 1
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FIG 2. This plot shows the density of the estimated mean relative effect size H when the true mean relative
effect size is η = 0. Each panel shows the distribution of H when effects in the replication study are zero (i.e.,
θ2j = 0) and effects in the original studies are small (θ1 = 0.2), medium (θ1 = 0.5), or large (θ1 = 0.8). Within
each panel, the colors correspond to the distribution of H for each replication research program. Note that an
accurate estimate would correspond to H ≈ 0, and an inaccurate estimate would correspond to H ≈ 1 or -1.

5. Analyses of Differences in Effects. Though the ratio of two effect estimates can
be difficult to work with (see previous section), their difference is often much less noisy.
Research programs, like the RPE and RPP (though not the RPSN), have applied paired t-
and Wilcoxon tests to the effect size estimates for the original and replication studies. In this
section, we argue that this can provide a well-powered test of whether the original studies
have the same average effect as the replication studies (i.e., µ1 = µ2). However, we also
point out that the focus on means can be a little misleading; a group of original and replication
studies can have the same average effect even if each original-replication study pair obtains
very different effects (i.e., µ1 = µ2 but θ1j 6= θ2j for all j).

Paired tests of effect sizes can be understood in terms of the parameters δj = θ1j − θ2j
and their estimates Dj = T1j−T2j ; note Dj ∼N(δj , v1j +v2j). As discussed in the notation
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section, we can think of the δj as having some distribution with mean µδ , which means that
paired tests of effect sizes are formally testing:

H0 : µδ = 0

Rejecting H0 is taken as a sign of poor replicability. If the δj are approximately normally
distributed, then one can just compute the paired t-statistic ignoring the vij , as was done
by the RPP. A more powerful version of that test uses a precision-weighted mean of the
differences, rather than the unweighted mean (see Hedges & Olkin, 1985). Alternatively, if
the δj are not normally distributed, one can use the Wilcoxon test.

Hedges and Pigott (2001) derive the power of the test that uses a precision-weighted aver-
age, which will be at least as powerful as the other tests that have been used. They find that
with large numbers of studies (or smaller numbers of large studies) that the power of this test
will be high. Using their results, the RPP would have had 80% power to detect a difference of
µδ = 0.05 and the RPE would have had 80% power to detect a difference of about µδ = 0.15.

While this test helps pool information across studies, it only provides part of the picture.
This is because the mean difference between original and replication effects µδ is just one
summary statistic of an entire distribution; µδ = 0 does not imply that any of the studies
replicate successfully. It is possible for µδ = 0 even if |δj | is large for all j: that is, it is
possible for all of the replications to have failed dramatically, but for the mean difference
between effect parameters of original and replication studies to be zero. Moreover, if the
distribution of the δj has a large variance τ2δ , then even if µδ = 0, large values of |δj | may
be probable, which would be a sign of poor replicability. Perhaps a more complete analysis
would examine the full distribution of δj . If the θij are treated as random, then so are the δj ,
and hence common methods used with random-effects meta-analyses can provide inference
for the mean µδ and variance τ2δ , or produce prediction intervals for the distribution of the
δj (see, e.g., Borenstein et al., 2009; Cooper et al., 2009; Hedges & Vevea, 1998; Riley et
al., 2011; Veroniki et al., 2016). Not only would this provide a more complete understanding
about replication across findings, it may prove to be a more statistically precise approach than
examining ratios of effect estimates for the reasons described in the previous section.

6. Prediction Intervals. A different strategy for comparing original and replicated stud-
ies is to evaluate the proportion π of effect sizes of the replicated studies are contained in the
100× (1− α)% prediction interval of the original study. A prediction interval, as proposed
by Patil et al. (2016) is T1j ± c(1−α/2)

√
v1j + v2j where c(1−α/2) is the 1−α/2 percentile of

the standard normal distribution. Most prediction interval analyses involve a 95% prediction
interval, which would mean α = 0.05 and c(1−α/2) ≈ 1.96. “Successful” replication occurs
when T2j is contained in that interval. A groupwise aggregation of this approach is equivalent
to asking how frequently the difference between T1j and T2j is statistically significant and
the proportion π is the average acceptance rate for the tests (across them pairs). This strategy
has the virtue that when θ1j = θ2j for all j = 1, . . . ,m, exactly 95% of the T2j values will lie
in the prediction interval.

The weakness of this method is that the acceptance rate of tests between two effect sizes
can be relatively large when θ1j 6= θ2j , even if θ1j − θ2j is not negligible. When θ1j 6= θ2j the
acceptance rate is one minus the power of the tests, and the power of the test for differences
between effects is often rather small unless the studies have unusually large sample sizes (see
Hedges and Schauer, 2019a). For example, suppose that that both studies had a sample size
of 80 so that v1j = v2j ≈ 4/80. Then if θ1j = θ2j , for all j, then the probability that T2j is in
the 95% prediction interval of T1j is 95%, but if θ1j − θ2j = 0.2, for all j, then the probability
that T2j is in the 95% prediction interval of T1j is 90%, and if θ1j − θ2j = 0.4, for all j,
then the probability that T2j is in the 95% prediction interval of T1j is 76%. This latter figure
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matches closely the 77% of T2j values that were in the 95% prediction interval based on
T1j that Patel, et al., (2016) computed in their analysis of the RPP studies. Thus the analysis
they conducted is consistent with differences between effect sizes of as much as 0.4 for every
finding—a difference that is closer to Cohen’s benchmark for a “medium sized” effect (d =
0.5) than a “small effect” (d = 0.2). Despite a 77% coverage probability, it seems unlikely
that researchers would characterize a difference between a pair of effects as large as 0.4 as a
successful replication, let alone a difference that size between every pair of effects.

7. Correlation Between Effects. Replication has been assessed in terms of the linear
relationship between effect estimates T1j and T2j , including numerically with the Pearson or
Spearman correlation, as well as visually with scatterplots of (T1j , T2j) (e.g., Open Science
Collaboration, 2015). This can be seen as assessing replication via the correlation between
effect parameters ρ=Cor(θ1j , θ2j), which is estimated with the correlation of the effect esti-
mates r =Cor(T1j , T2j). The idea behind this is that if pairs of studies successfully replicate,
their effects should be similar, and hence their correlation should be close to 1.0. However,
there are two limitations to such analyses. First, even if ρ= 1, this does not necessarily mean
that θ1j = θ2j ; for instance if θ1j = 100× θ2j , so that each original effect is 100 times larger
than the replication effect, the correlation is still ρ= 1. Second, as detailed below, the sample
correlation r can have a substantial downward bias.

Because the estimation errors of T1j and T2j are independent, r will tend to underestimate
ρ. When the θij are treated as fixed, the expectation of r can be written as:

(7) E[r|θij ]≈ ρ
τ1τ2√

(τ21 + v̄1)(τ22 + v̄2)
< ρ

where v̄i =
∑m

j=1 vij/m is the mean within study variance for the original (i= 1) and repli-
cation (i= 2) studies, and τ2i is the variance of the effect parameters for the original (i= 1)
and replication (i = 2) studies as described in the notation section. Given equation (7) we
would expect r to be smaller than ρ, and its bias will increase as a function of vij/τ2i . Figure
3 shows the expected value of r on the y-axis as a function of ρ (x-axis) for each research
program (linetype). The expected values in the figure are computed using meta-analytic esti-
mates of τ2i for each program, and the reported estimation error variance vij . The dotted line
in the figure indicates an unbiased estimate of ρ. Figure 3 shows that even if all of the studies
replicated exactly, these programs would be expected to report a correlation of r less than
0.8, and possibly even below 0.6.

To gain some intuition about the bias of r, suppose that τ2i = av̄i for some constant a.
Then the bias of r can be written as

(8) Bias(r|θij)≈
−ρ

1 + a

When a is very small (i.e., near zero), then the bias will be −ρ; that is, when τ2i << vij ,
we would expect r to be near zero, regardless of the value of ρ. However, the bias decreases
as a increases, which means that when τ2i >> vij , the bias will be smaller. For instance if
a > 20, then the bias will be less than 0.05. This is consistent with the fixed-effects logic: if
the studies are really large so that vij → 0 and a→∞, then we would observe the θij with
almost no error and hence be able to compute ρ without bias. In other words, what is driving
the bias of the fixed-effects correlation estimate is that the θij are estimated with error by the
Tij . Viewed this way, (7) is analogous to the attenuation formula for measurement error, and
correcting this attenuation has long been studied in the statistical literature (e.g., Muchinsky,
1996; Spearman, 1904, 1910).

If the θij are treated as random, there is an additional source of bias. It has long been
known that unless the correlation between two random variables is -1, 0, or 1, the sample
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FIG 3. This figure shows the approximate expectation of the correlation between effect estimates r (y-axis) as a
function of the correlation between effect parameters ρ (x-axis) for the RPE, RPP, and RPSN. The dotted line
indicates an unbiased estimate, and values below that line mean that r understates ρ.

correlation will be a downwardly biased estimate of their true correlation (see Fisher, 1915,
1921). If the θij are normally distributed, this bias is largely a function of sample size and
will be negligible if a larger number of findings (i.e., m > 20) are replicated. However, if the
θij are not normally distributed, the bias can be larger (Bishara & Hittner, 2015). This means
that even if vij → 0, the sample correlation r would still be a downwardly biased estimate
of ρ in the random-effects model, particularly when m is small or the θij are not normally
distributed. Thus, there is bias due to the fact that we estimate θij with error (as described in
the previous paragraphs), and also from using the sample of m findings to estimate ρ in the
population. We would note that it is possible to estimate ρ without bias, including methods
described by Olkin and Pratt (1958) or Garren (1998).

8. Fisher’s Method. The use of Fisher’s method in replication research is tied to the idea
that pairwise “replication failure” is often concluded when an original study has a statistically
significant effect, but the replication study does not. Various researchers, including the RPP
have pointed out that a null result in a replication study is not evidence that θ2j = 0, and so
some “replication failures” may arise from “false negatives”: replication studies that failed to
detect a true nonzero effect due to low power. To evalute the existence of false negatives, the
RPP applied a post-hoc adaptation of Fisher’s method that was later formalized by Hartgerink
et al. (2017), who concluded that this could generally be seen as a well-powered test. Here,
we reconsider these findings with asymptotic statistical theory and simulations and determine
that this method is unlikely to have high power. Moreover, even when it has high power, it
cannot tell which or how many of the null replication studies are false negatives.

Suppose that for findings j = 1, . . . , s ≤m that T1j is statistically significant, but T2j is
not. This means that that p2j > α for j = 1, . . . , s; in this article, we assume α= 0.05. This
method tests the null hypothesis

(9) H0 : θ21 = . . .= θ2s = 0

Traditionally, Fisher’s method would use the test statistic

(10) − 2

s∑
j=1

log(p2j)
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However, this conditional application of Fisher’s method uses p-values that are necessarily
on the interval [0.05, 1], and hence adapts this statistic as follows:

(11) X2
F =

s∑
j=1

−2 log

(
p2j − α
1− α

)
Under the null hypothesis, X2

F will have a chi-squared distribution with 2s degrees of free-
dom. Thus, we reject H0 in (9) when X2

F exceeds c(1−α)(s), the 1 − α percentile of that
distribution.

There are two key limitations to this procedure. First, this test is relatively uninformative.
Failure to reject H0 is inherently ambiguous, and even if we do reject H0, that does not
tell us which or how many θ2j are nonzero, or whether those nonzero effects are positive or
negative. Second, contrary to the reporting by Hartgerink et al., this method is likely to be
underpowered to detect false negatives. This is because the power will depend on how many
of the θ2j are nonzero, and how large they are (see below), and power will only be high if
several of θ2j are nonzero and large.

The power of this test will depend on the non-null sampling distribution of X2
F , which in

turn depends on the distribution of the p2j when θ2j 6= 0. Equation (5) gives the unconditional
asymptotic distribution of pij (i.e., pij ∈ [0,1]), but the p-values used by this method are con-
ditional: they are only used if p2j >α. The relevant asymptotic distribution of the conditional
p-value is much more complex, which means that the asymptotic distribution of X2

F in (11)
is not known exactly. However, it will be closely related to the traditional test statistic (11),
and the properties of the conditional test will be similar to that of the unconditional test.

Given the result in (5), it follows that the asymptotic power of the unconditional test is:

(12) 1−Φ

c(1−α)(s)−∑s
j=1 θ

2
2j/v2j√

2
∑s

j=1 θ
2
2j/v2j


To gain some intuition about (12), suppose that u ≤ s of the studies involve θ2j 6= 0, and
that they all have roughly the same power so that θ22j/v2j = λ for those u studies. Then (12)
reduces to

(13) 1−Φ

(
c(1−α)(s)− sλus√

2sλus

)
From (13), we can see that the power of the unconditional Fisher’s method will increase with
(a) the number of null replication studies s, (b) the proportion that are false negatives u/s,
and (c) how powerful those false negative studies were λ. For reference, if u= 30 of s= 100
null replications were false negatives and they each had 80% power to detect θ2j 6= 0 (so that
λ≈ 7.85), the power of Fisher’s method would be about 50%.

Similar factors would seem to govern the power of the conditional test. Though the dis-
tribution of X2

F is not known exactly, we can approximate it with simulations based on the
model in equation (2) (described further in the Appendix). In these simulations, sets of effect
estimates Tj are drawn from normal distributions with mean θj and variance vj , and their
two-sided p-values are computed as in (3). Only statistically significant (α= 0.05) values of
Tj are retained in the sample, and their p-values are then used to compute X2

F . Each simu-
lation involves specifying different values of θj , vj , and s, and hence different values of s,
u/s, and λ.

The first set of simulations uses values of θj and vj so that the false negatives have a given
statistical power. Figure 4 shows the results of these simulations: it plots the power of this test
as a function of s, u/s, and λ. For instance, the first panel shows the power of Fisher’s method
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FIG 4. This figure shows the power of the conditional application Fisher’s method to detect at false negatives as
a function of the number of null findings (s), the proportion of null findings that are false negatives (x-axis), and
the power of those studies involving false negatives (linetype).

when there are s= 10 experiments with nonsignificant results: the x-axis corresponds to the
proportion of those findings that are nonzero u/s, and the linetype corresponds to the power
of the u non-null experiments (which depends on λ). These graphs show that the power is
only high when s, u/s, and λ are large. For example, in the second panel we see that for
s = 50 nonsignificant findings, the conditional test would only have high power if nearly a
quarter (u≥ 12) of those studies were false negatives that all had 80% power.

This presents something of a paradox. In order for this test to have high power, there would
need to be a large number of false negatives, each with high power. However, the higher the
power of each individual study, the less likely it is that they all fail to detect an effect. Thus, it
would seem that Fisher’s method is unlikely to have high power. For the s= 50 example, the
probability that 12 studies each powered at 80% all fail to detect an effect is less than 10−8.

Empirically, we can get a sense of the best-case scenarios for the power of the conditional
test based on data from the RPE, RPP, and RPSN. From (13), it is clear that the most powerful
this test could be would involve a scenario where all of the false negatives (i.e., θ2j 6= 0)
were from the largest, and hence potentially more powerful experiments. In simulations, this
means ordering studies from smallest v to largest, and then iteratively setting effects for the
first u < s effects to be nonzero.

Figure 5 shows the best-case power of Fisher’s method for the RPE, RPP, and RPSN. For
the RPE, the conditional test will only have high power if at least half of the null findings
involved moderate (0.5) or large effects (0.8). For the RPP, the test will be well powered if



STATISTICAL METHODS FOR AGGREGATE PATTERNS OF REPLICATION FAILURE 15

RPSN (s = 9)

RPP (s = 64)

RPE (s = 7)

0% 25% 50% 75% 100%

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Proportion of False Negatives

P
ow

er
 o

f F
is

he
r's

 M
et

ho
d

θ = 0.2
θ = 0.5
θ = 0.8

FIG 5. This figure shows the power of Fisher’s method using the estimation error variances v2j of the RPE, RPP,
and RPSN experiments. The x-axis indicates the proportion of the s null findings that are false negatives, and the
linetype corresponds to various magnitudes of the true effect sizes (θ) for those false negatives.

about 10 of the null findings involved moderate or large effects, or if most (>65%) involved
small effects. For the RPSN, this test would only have high power if more than four of the
9 null findings actually had medium or large effects. While it may be worth conducting this
test post-hoc, the fact that it will only be well-powered in certain (unlikely) scenarios means
that any failure to reject H0 in (9) should be interpreted with caution.

9. Analyses of Significance Patterns and p-values. Comparisons of p-values have
played a prominent role in groupwise analyses of replication, including the RPP’s use of
a few different paired tests of p-values. In this section, we show how such tests implicitly
define replication in a way that is misleading. Specifically, we show that these tests concern
whether the within-study power to detect a non-null effect is about the same for original and
replication studies. However, substantial pairwise differences in effects (i.e., θ1j 6= θ2j ,∀j)
can exist even when original and replication studies have the same power. Conversely, differ-
ences in power between the original and replication studies can mask the fact that effects are
actually quite similar. In other words, because these analyses rely on a misleading definition
of replication, their conclusions about replication are difficult to interpret.

Groupwise analyses of p-values have compared the distributions of p-values from the orig-
inal studies p1j and replication studies p2j . The RPP used McNemar’s test to conclude that
original effect estimates were more likely to be statistically significant than replication effect
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estimates (p < 0.001), and they also tested whether the original and replication studies had
the same average p-values.

McNemar’s test of p-values concerns the proportion of original and replication studies that
are statistically significant (pij < 0.05). This can be summarized in the following 2× 2 table

Replication Studies
Original Studies Significant Non-significant
Significant π11 π10
Non-significant π01 π00

where πkl are marginal probabilities of significant patterns: k = 1 indicates a significant orig-
inal study and l = 1 indicates a significant replication study (e.g., π11 is the probability that
both the original and replication studies are significant). The null hypothesis of McNemar’s
test is:

(14) H0 : π11 + π01 = π10 + π11

In addition, the RPP conducted paired t- and Wilcoxon tests of p-values. This formally tests
whether the average of the original study p-values µp1 is equal to the average of the replica-
tion study p-values µp2; it can be written

(15) H0 : µp1 = µp2

For the sake of simplicity, we focus on the t-tests.
Note that H0 in both (14) and (15) concern the distribution of p-values, and by equations

(5) and (4) can be expressed in terms the θ2ij/vij . For (14), the probability that a study chosen
at random from a group of studies results in a statistically significant effect is just the average
of 1− βij of the studies in that group (i.e., their average power). Thus, (14) will only be true
when the average of the −β1j is equal to the average of the 1− β2j , which in turn will be
true when λ1 (the mean of the θ21j/v1j) is equal to λ2 (the mean of the θ22j/v2j). For (15), the
arguments of equation (5) show that the mean of a single p-value is determined by θ2ij/vij ,
and so the mean of a group of p-values is determined by λi. Thus, both (14) and (15) can be
written as

(16) H0 : λ1 = λ2

Viewed this way, both tests are a comparison of the within-study power between a set of
original and replication studies.

The null hypotheses in (14)-(15) can be a misleading definition of replication because
they focus on statistical power, and not effects. Similarity in power does not imply that effect
parameters are the same size or direction. For instance, suppose θ1j =−θ2j and v1j = v2j so
that each replication got the opposite effect as the original study. However, this implies that
θ21j/v1j = θ22j/v2j and λ1 = λ2. Thus, for these tests, scenarios where all studies disagree
qualitatively can correspond to H0 being true, and the probability of rejecting it is only α=
0.05. Conversely, suppose θ1j = θ2j so that all of the replication attempts succeeded. If v1j 6=
v2j , then the power of the original studies will be different than the power of the replications.
This means that the null hypothesis will be false, and both tests will be more likely to reject
it. In other words, there are conditions under which studies clearly fail to replicate that these
tests would be unlikely to detect, as well as conditions under which studies successfully
replicate but these tests would be more likely to indicate otherwise.

Understanding how probable these tests are to result in misleading conclusions requires
some knowledge of the non-null sampling distributions of their test statistics X2

M and tp,
respectively. Both X2

M and tp depend on θ2ij/vij . The exact non-null sampling distributions
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are not known, but we can use Monte Carlo simulations to closely approximate them. These
simulations, discussed in further detail in the Appendix, but follow the same approach as the
simulations for the mean relative effect sizes. Since the distributions of tp and X2

M depend
on the power of each individual study (via θ2ij/vij), as well as the number of findings subject
to replication attempts m, our simulations involved different numbers of findings (m = 25,
50, 100), and different power levels for the original and replication studies (40%, 60%, 80%).
For simplicity these simulations assume that each original study has power 1− β1 and each
replication has power 1− β2.

Suppose that all of the studies replicate exactly, so that θ1j = θ2j ,∀j, but because the
original and replication studies have different sample sizes, they have different average power.
Table 2 shows the rejection rate of both methods under this assumption. The rejection rate is
shown for different discrepancies between the original and replication study power (1−β1 vs.
1−β2), and numbers of findingsm. In this table, rejecting the null hypothesis and concluding
that the replications failed would be an error. The table shows that the power of both tests
increases as a function of the discrepancy in within-study power β2 − β1, and the number of
findings m. For instance, if all of the original studies have 40% power and the replications
have 60% power, then McNemar’s test will have a rejection rate of 27% when there are only
m= 25 findings and 80% when m= 100. However, for larger power discrepancies, such as
when original studies have 40% power and the replications have 80% power, McNemar’s test
will reject the null hypothesis with over 98% probability for m= 50 findings.

Rejection Rate
Test Power 40%/60% Power 60%/80% Power 40%/80%

m= 25
McNemar 0.267 (0.015) 0.304 (0.01) 0.819 (0.013)
t-test 0.289 (0.012) 0.304 (0.01) 0.822 (0.011)

m= 50
McNemar 0.522 (0.016) 0.599 (0.016) 0.988 (0.003)
t-test 0.529 (0.016) 0.561 (0.015) 0.985 (0.004)

m= 100
McNemar 0.801 (0.01) 0.873 (0.01) 0.999 (0.0003)
t-test 0.849 (0.01) 0.825 (0.01) 0.999 (0.0002)

TABLE 2
This table shows the rejection rate for McNemar’s test and the t-test of p-values as a function of the power of the
original and replication studies, and the number of findings m. Cells report the simulated probability and Monte
Carlo standard error. This table assumes that all findings successfully replicate, so that θ1j = θ2j , which means

that rejecting the null hypothesis and concluding replication failure is an error.

This highlights the importance of basing analyses on valid definitions of replication. When
there are large differences between the within-study power of original and replication studies,
these tests have high power. On its own, this sounds like a desirable feature, but because of
the way these tests define replication, their high power means that they are very likely to
conclude studies fail to replicate, even when all of them replicate successfully.

This dynamic can be demonstrated on the RPE, RPP, and RPSN, each of which designed
replication studies to be larger than the original studies. Suppose that θ1j = θ2j = 0.5 (in
Cohen’s d units) for j = 1, . . . ,m, so that all the studies successfully replicated. Given the
v1j and v2j in each program, we would expect McNemar’s test to rejectH0 with nearly 100%
probability for all three programs. The t-test would reject H0 with probability greater than
41% in the RPE and over 98% for the RPP and RPSN. Thus, if all of the replications in these
programs succeeded, these tests would be almost certain to indicate otherwise.

10. Conclusions. This article has examined the properties of groupwise analysis meth-
ods that have been used to assess replication and found that most methods we considered had
serious limitations. The mean relative effect size can have substantial uncertainty, which can
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lead to misleading conclusions with surprising frequency. Estimates of the correlation be-
tween original and replication studies can greatly understate the actual correlation between
effects in those studies. Fisher’s method, which has been used to detect false negative repli-
cation studies, is bound to have low power in this context. Finally, comparisons of p-values
frame replication as a comparison of power between original and replication studies, which
can be a misleading definition of replication.

Because many of these analysis methods have poor statistical properties under seemingly
plausible conditions, it is therefore difficult to interpret the results of such methods with much
confidence. For instance, a reported mean relative effect size near 0 may imply that the actual
ratio of replication study effects to original study effects is near zero, but this also has a
reasonable chance of happening even when their ratio is 1. Our focus here is not to criticize
the results of prior replication research, but to emphasize that the methods producing those
results (and the results of future efforts) have statistical properties that must be considered.

Perhaps the most important consideration for assessing replication is its operational defini-
tion. Methods that rely on a flawed definition of replication will necessarily be flawed, and in
some sense, discussion of their properties becomes somewhat irrelevant: if such an analysis
method has good statistical properties, it will simply be more certain about the wrong thing.
Greater effort should be devoted to ensuring that any proposed analysis method aligns with
clear and justifiable definitions of replication. We have argued that such definitions should
depend on effect parameters. As scientific and statistical fields increasingly emphasize the
interpretation of experiments in terms of effect sizes, and it seems only natural to extend
this emphasis to interpretations of replication (see Wasserstein Lazar, 2016; Cooper, 2011).
Further, patterns used to describe replication across multiple findings should be somewhat
consistent with the definitions used to define replication for a single finding.

Additional work is also needed on design and analysis methods. Estimators of important
quantities pertaining to replication should be accurate; large and unpredictable biases should
be avoided, as should tests with uncontrolled or poor error rates. However, the properties of
analysis methods are closely tied to design. The same principles used to design a single study
to ensure high power or precision can be adapted for ensembles of studies. In this way, we
can ensure that the results of replication studies are accurate and conclusive.

Finally, throughout this article, we have advocated for a meta-analytic framework for as-
sessing replication. While it is not the only way to think about replication, we find that meta-
analysis offers a few important advantages. The model that underpins most meta-analyses
distinguishes between the effect parameters and estimation errors and allows for a more
clear-cut approach to defining replication. Inferential procedures based on this model have
been studied in the meta-analytic literature for decades, and such procedures may possibly
be adapted to the study of replication (see Hedges Schauer, 2019b; Schauer, 2018). In par-
ticular, standard meta-analytic methods can be used to explore the distribution of differences
between original and replication study results, which we described in this article.

APPENDIX: SIMULATIONS

This article used simulations to approximate the sampling distribution three different test
statistics. The first is the test statistic for Fisher’s method, X2

F given in equation (11). The
second is the test statistic for McNemar’s test of the null hypothesis defined in (14):

(17) X2
M =

(m10 −m01)
2

m10 +m01

where mkl is the number of experiments that exhibit a given statistical significance pattern;
k = 1 indicates a significant original study and l= 1 indicates a significant replication study;
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for instance, m11 is the number of experiments for which both the original and replication
studies are significant.

The third is the test statistic for tests of p-values for null hypothesis (15). The test statistic
for this test is:

(18) tp =
p̄d

SD[p̄d]/
√
m

where p̄d is the average of the p1j − p2j , and SD[p] is their standard deviation:

(19) p̄d =
1

m

m∑
j=1

(p1j − p2j); SD[p] =
1√
m− 1

m∑
j=1

[(p1j − p2j)− p̄d]2

All tables and graphics in this paper are based on 100,000 simulations, which are described in
greater detail below. Each of these sampling distributions depend on θij and vij , thus a given
simulation consisted of drawing m pairs of studies from normal distributions as in equation
(2) and computing the relevant test statistic. What varied between simulations were the values
of θij and vij .

For the simulations of X2
M and tp in table 2, the sampling distribution of each statistic

depends on the power of each null hypothesis test described by equations (14)-(15). The
power of these tests depends on the value θ2ij/vij . In table 2, we assumed that studies had
40%, 60%, and 80% power. Thus we set the values of θ2ij/vij to be 2.91, 4.90, and 7.85.
For instance in the “Power = 40%/60%” column, we set θ21j/v1j = 2.91 and θ22j/v2j = 4.90
for all j. Further, to obtain the potential error rates in the RPP, RPE, and RPSN data, we set
θ1j = θ2j = 0.5 and used the vij from the RPP, RPE, and RPSN data that were converted to
be on the scale of Cohen’s d.

For Fisher’s method, the non-null sampling distribution of X2
F also depends on θ2ij/vij ,

and hence we used the same values as above. To obtain an upper bound of the power for the
RPP, RPE, and RPSN, we assumed the largest studies were the false negatives. To do this,
we sorted the s nonsignificant replication studies in each program by v2j in ascending order.
We then iteratively set the first u effect parameters θ2j to be equal to a given value (0.2, 0.5,
and 0.8) and ran the simulations.
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